Plasmodiophora brassicae

not annotated - annotated - LINNAEUS only

21497131

Complete sructure of nuclear rDNA of the obligate plant parasite Plasmodiophora brassicae: intraspecific polymorphisms in the exon and group I intron of the large subunit rDNA.

Plasmodiophora brassicae is a soil-borne obligate intracellular parasite in the phylum Cercozoa of the Rhizaria that causes clubroot disease of crucifer crops. To control the disease, understanding the distribution and infection routes of the pathogen is essential, and thus development of reliable molecular markers to discriminate geographic populations is required. In this study, the nuclear ribosomal RNA gene (rDNA) repeat unit of P. brassicae was determined, with particular emphasis on the structure of large subunit (LSU) rDNA, in which polymorphic regions were expected to be present. The complete rDNA complex was 9513bp long, which included the small subunit, 5.8S and LSU rDNAs as well as the internal transcribed spacer and intergenic spacer regions. Among eight field populations collected from throughout Honshu Island, Japan, a 1.1 kbp region of the LSU rDNA, including the divergent 8 domain, exhibited intraspecific polymorphisms that reflected geographic isolation of the populations. Two new group I introns were found in this region in six out of the eight populations, and the sequences also reflected their geographic isolation. The polymorphic region found in this study may have potential for the development of molecular markers for discrimination of field populations/isolates of this organism.

21183405

Genomics of biotrophic, plant-infecting plasmodiophorids using in vitro dual cultures.

The plasmodiophorids are a phylogenetically distinct group of parasitic protists that infect plants and stramenopiles, causing several important agricultural diseases. Because of the obligate intracellular part of their lifecycle, none of the plasmodiophorids has been axenically cultured. Further, the molecular biology of the plasmodiophorids is poorly understood because pure cultures are not available from any species. We report on an in-vitro dual culture system of the plasmodiophorids Plasmodiophora brassicae and Spongospora subterranea with their respective plant hosts, Brassica rapa and Solanum tuberosum. We show that these plasmodiophorids are capable of initiating and maintaining stable, long-term plant cell callus cultures in the absence of exogenous plant growth regulators. We show that callus cultures harbouring S. subterranea provide an excellent starting material for gene discovery from this organism by constructing a pilot-scale DNA library. Bioinformatic analysis of the sequences established that almost all of the DNA clones from this library were from S. subterranea rather than the plant host. The Spongospora genome was found to be rich in retrotransposable elements, and Spongospora protein-coding genes were shown to contain introns. The sequence of a near full-length non-LTR retrotransposon was obtained, the first transposable element reported from a cercozoan protist.